Hydrothermal fluid origins of carbonate-hosted Pb-Zn deposits of the Sanjiang thrust belt, Tibet: Indications from noble gases and halogens

Ying-Chao Liu,* Mark A. Kendrick, Zeng-Qian Hou, Zhu-Sen Yang, Shi-Hong Tian, Yu-Cai Song, Masahiko Honda

*Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100083, China

The Sanjiang metallogenic belt includes a variety of economically important carbonatehosted Pb-Zn deposits that share some similarities with classic Mississippi Valley-type (MVT) ore deposits but are hosted within a thrust belt rather than an orogenic foreland. This study aims to clarify the origin of mineralizing fluids responsible for this style of mineralization.

Fluid inclusions trapped in ore-stage carbonate and fluorite from these deposits have salinities of ~6 – 28 wt. % NaCl equivalent and homogenization temperatures of 70 – 370 °C that extend to much higher values than are typical of MVT deposits. The majority of ore-stage samples have fluid inclusion molar Br/Cl ratios of between seawater (1.5×10^{-3}) and $(2.86 \pm 0.04) \times 10^{-3}$, but low salinity fluid inclusions in late-calcite have lower Br/Cl of less than $(0.55 \pm 0.01) \times 10^{-3}$. In contrast, fluid inclusion molar I/Cl ratios are uniformly greater than the seawater value of ~0.8 × 10⁻⁶ and extend from $(2.1 \pm 1.1) \times 10^{-6}$ to $(506 \pm 12) \times 10^{-6}$. This range of Br/Cl and I/Cl values is similar to what has been reported for fluid inclusions in other MVT districts and together with the fluid salinity implies the ore-forming fluids had a dominant origin from basinal brines (e.g. sedimentary formation waters) formed by the subaerial evaporation of seawater; all the fluids were influenced by addition of organic Br and I derived from the sedimentary host rocks and some fluids were locally modified by interaction with evaporites producing low Br/Cl ratios.

The fluid inclusions have 40 Ar/ 36 Ar ratios of up to 441 that are higher than the atmospheric value of 296 and typical of carbonate sedimentary rocks. The fluid inclusions have high concentrations of atmospheric 36 Ar and variable 129 Xe/ 36 Ar and 84 Kr/ 36 Ar ratios that are outside the range expected from mixing air and air-saturated water. These data are likely to reflect a complex fluid history involving acquisition of atmospheric (36 Ar, 84 Kr, 129 Xe) and radiogenic (e.g. 40 Ar*) noble gases trapped in sedimentary rocks and fractionation of these gases between water and hydrocarbons. The 3 He/ 4 He ratios of fluorite fluid inclusions range from a typical crustal value of 0.061 ± 0.004 to values of >0.7 Ra, indicating a minor component of mantle-derived 3 He. The fluids with the highest 3 He/ 4 He also have 4 He/ 40 Ar* close to the mantle value suggesting the 3 He could have been introduced by a volumetrically minor fluid of either magmatic or deep metamorphic origin (40 Ar* = radiogenic 40 Ar).

The new halogen and noble gas data are consistent with a model in which regional Pb-Zn mineralization formed by mixing two modified basinal brines that were transported through independent aquifers and fluid pathways to the sites of mineralization. A low temperature brine contained organic Br, I and H₂S, and a high temperature metal-rich brine (>370 °C) that included a volumetrically minor magmatometamorphic component was channeled up deeply penetrating thrust structures.